Python Tutorials
- Python
- How to install Python?
- PIP
- How to Run Python Program
- Python Identifiers,Statement, Indentation and Comments
- Variable
- Data type
- Decision Making
- Python Loops
- Break,Continue, Pass
- Functions
- Predefine Functions
- Lambda Functions
- Variable Scope
- List
- Tuple
- Python Sets
- Python Dictionary
- Python String
- String Formating
- Input/Output
- File Handling (Input / Output)
- Iterators
- Python Modules
- Python Date
- Python JSON
- Classes and Objects
- Constructor
- Polymorphism
- Encapsulation
- inheritance
- Class or Static Variables in Python
- class method vs static method
- Abstraction
- Exception Handling
- MySql Python
- MySql Create Database
- MySql CRUD
- Django
What is Python Sets?
A set is an unordered collection of items. Every set element is unique (no duplicates) and must be immutable (cannot be changed). However, a set itself is mutable. We can add or remove items from it. Sets can also be used to perform mathematical set operations like union, intersection, symmetric difference, etc.
Creating Python Sets
A set is created by placing all the items (elements) inside curly braces {}, separated by comma, or by using the built-in set() function. It can have any number of items and they may be of different types (integer, float, tuple, string etc.). But a set cannot have mutable elements like lists, sets or dictionaries as its elements.
File name : index.py
# Different types of sets in Python
# set of integers
my_set = {1, 2, 3}
print(my_set)
# set of mixed datatypes
my_set = {1.0, "Hello", (1, 2, 3)}
print(my_set)
Output
{1, 2, 3}
{1.0, (1, 2, 3), 'Hello'}
example
File name : index.py
# set cannot have duplicates
# Output: {1, 2, 3, 4}
my_set = {1, 2, 3, 4, 3, 2}
print(my_set)
# we can make set from a list
# Output: {1, 2, 3}
my_set = set([1, 2, 3, 2])
print(my_set)
# set cannot have mutable items
# here [3, 4] is a mutable list
# this will cause an error.
my_set = {1, 2, [3, 4]}
Output
{1, 2, 3, 4}
{1, 2, 3}
Traceback (most recent call last):
File "<string>", line 15, in <module>
my_set = {1, 2, [3, 4]}
TypeError: unhashable type: 'list'
Modifying a set in Python
Sets are mutable. However, since they are unordered, indexing has no meaning.
We cannot access or change an element of a set using indexing or slicing. Set data type does not support it.
We can add a single element using the add() method, and multiple elements using the update() method. The update() method can take tuples, lists, strings or other sets as its argument. In all cases, duplicates are avoided.
File name : index.py
# initialize my_set
my_set = {1, 3}
print(my_set)
# my_set[0]
# if you uncomment the above line
# you will get an error
# TypeError: 'set' object does not support indexing
# add an element
# Output: {1, 2, 3}
my_set.add(2)
print(my_set)
# add multiple elements
# Output: {1, 2, 3, 4}
my_set.update([2, 3, 4])
print(my_set)
# add list and set
# Output: {1, 2, 3, 4, 5, 6, 8}
my_set.update([4, 5], {1, 6, 8})
print(my_set)
Output
{1, 3}
{1, 2, 3}
{1, 2, 3, 4}
{1, 2, 3, 4, 5, 6, 8}
Removing elements from a set
A particular item can be removed from a set using the methods discard() and remove(). The only difference between the two is that the discard() function leaves a set unchanged if the element is not present in the set. On the other hand, the remove() function will raise an error in such a condition (if element is not present in the set).
File name : index.py
# Difference between discard() and remove()
# initialize my_set
my_set = {1, 3, 4, 5, 6}
print(my_set)
# discard an element
# Output: {1, 3, 5, 6}
my_set.discard(4)
print(my_set)
# remove an element
# Output: {1, 3, 5}
my_set.remove(6)
print(my_set)
# discard an element
# not present in my_set
# Output: {1, 3, 5}
my_set.discard(2)
print(my_set)
# remove an element
# not present in my_set
# you will get an error.
# Output: KeyError
my_set.remove(2)
Output
{1, 3, 4, 5, 6}
{1, 3, 5, 6}
{1, 3, 5}
{1, 3, 5}
Traceback (most recent call last):
File "<string>", line 28, in <module>
KeyError: 2
Similarly, we can remove and return an item using the pop() method. Since set is an unordered data type, there is no way of determining which item will be popped. It is completely arbitrary. We can also remove all the items from a set using the clear() method.
File name : index.py
# initialize my_set
# Output: set of unique elements
my_set = set("HelloWorld")
print(my_set)
# pop an element
# Output: random element
print(my_set.pop())
# pop another element
my_set.pop()
print(my_set)
# clear my_set
# Output: set()
my_set.clear()
print(my_set)
print(my_set)
Output
{'H', 'l', 'r', 'W', 'o', 'd', 'e'}
H
{'r', 'W', 'o', 'd', 'e'}
set()
Python Set Operations
File name : index.py
Union
Intersection
Union
Union of A and B is a set of all elements from both sets. Union is performed using | operator. Same can be accomplished using the union() method.
File name : index.py
# Set union method
# initialize A and B
A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7, 8}
# use | operator
# Output: {1, 2, 3, 4, 5, 6, 7, 8}
print(A | B)
Output
{1, 2, 3, 4, 5, 6, 7, 8}
File name : index.py
# use union function
>>> A.union(B)
{1, 2, 3, 4, 5, 6, 7, 8}
# use union function on B
>>> B.union(A)
{1, 2, 3, 4, 5, 6, 7, 8}
Set Intersection
Intersection of A and B is a set of elements that are common in both the sets. Intersection is performed using & operator. Same can be accomplished using the intersection() method.
File name : index.py
# Intersection of sets
# initialize A and B
A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7, 8}
# use & operator
# Output: {4, 5}
print(A & B)
Output
{4, 5}
File name : index.py
# use intersection function on A
>>> A.intersection(B)
{4, 5}
# use intersection function on B
>>> B.intersection(A)
{4, 5}
Set Difference
Difference of the set B from set A(A - B) is a set of elements that are only in A but not in B. Similarly, B - A is a set of elements in B but not in A. Difference is performed using - operator. Same can be accomplished using the difference() method.
File name : index.py
# Difference of two sets
# initialize A and B
A = {1, 2, 3, 4, 5}
B = {4, 5, 6, 7, 8}
# use - operator on A
# Output: {1, 2, 3}
print(A - B)
Output
{1, 2, 3}
Python Set Methods
There are many set methods.
File name : index.py
Method Description
add() Adds an element to the set
clear() Removes all elements from the set
copy() Returns a copy of the set
difference() Returns the difference of two or more sets as a new set
difference_update() Removes all elements of another set from this set
discard() Removes an element from the set if it is a member. (Do nothing if the element is not in set)
intersection() Returns the intersection of two sets as a new set
intersection_update() Updates the set with the intersection of itself and another
isdisjoint() Returns True if two sets have a null intersection
issubset() Returns True if another set contains this set
issuperset() Returns True if this set contains another set
pop() Removes and returns an arbitrary set element. Raises KeyError if the set is empty
remove() Removes an element from the set. If the element is not a member, raises a KeyError
symmetric_difference() Returns the symmetric difference of two sets as a new set
symmetric_difference_update() Updates a set with the symmetric difference of itself and another
union() Returns the union of sets in a new set
update() Updates the set with the union of itself and others
Iterating Through a Set
We can iterate through each item in a set using a for loop.
File name : index.py
for letter in set("apple"):
print(letter)
output
a
p
e
l
Built-in Functions with Set
File name : index.py
Function Description
all() Returns True if all elements of the set are true (or if the set is empty).
any() Returns True if any element of the set is true. If the set is empty, returns False.
enumerate() Returns an enumerate object. It contains the index and value for all the items of the set as a pair.
len() Returns the length (the number of items) in the set.
max() Returns the largest item in the set.
min() Returns the smallest item in the set.
sorted() Returns a new sorted list from elements in the set(does not sort the set itself).
sum() Returns the sum of all elements in the set.
Python Frozenset
Frozenset is a new class that has the characteristics of a set, but its elements cannot be changed once assigned. While tuples are immutable lists, frozensets are immutable sets. Sets being mutable are unhashable, so they can't be used as dictionary keys. On the other hand, frozensets are hashable and can be used as keys to a dictionary. Frozensets can be created using the frozenset() function. This data type supports methods like copy(), difference(), intersection(), isdisjoint(), issubset(), issuperset(), symmetric_difference() and union(). Being immutable, it does not have methods that add or remove elements.
File name : index.py
# Frozensets
# initialize A and B
A = frozenset([1, 2, 3, 4])
B = frozenset([3, 4, 5, 6])